Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,3-Bis(2,4-dibromophenyl)triazene

Manfredo Hörner, ${ }^{\text {a* }}$ Ivan C. Casagrande, ${ }^{\text {a }}$ Jairo Bordinhao $^{\text {a }}$ and Cäcilia M. Mössmer ${ }^{\text {b }}$

${ }^{\text {a }}$ Departamento de Quimica, Universidade Federal de Santa Maria, Caixa Postal 5071, 97050-020 Santa Maria RS, Brazil, and ${ }^{\mathbf{b}}$ Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany Correspondence e-mail: hoerner@base.ufsm.br

Received 3 September 2001
Accepted 28 January 2002
Online 28 February 2002

The crystal structure of the title compound, $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{4} \mathrm{~N}_{3}$, shows that the stereochemistry about the $\mathrm{N}=\mathrm{N}$ double bond of the $\mathrm{N}=\mathrm{N}-\mathrm{N}(\mathrm{H})$ moiety is trans. The whole molecule deviates slightly from planarity (r.m.s. deviation $0.164 \AA$). While one of the aryl substituents is almost coplanar with the triazene chain, weak intermolecular $\mathrm{Br} \cdots \mathrm{C}$ contacts cause the second aryl substituent to deviate by an angle of 9.1 (8) ${ }^{\circ}$ from the plane defined by the $\mathrm{N}=\mathrm{N}-\mathrm{N}$ group. Weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ interactions between molecules related by the diagonal glide plane give rise to chains, which are stacked along the [100] crystallographic direction. An unequal distribution of double-bond character between the N atoms suggests a delocalization of π electrons over the diazoamino group and the adjacent aryl groups.

Comment

Free 1,3-disubstituted triazenes, $R \mathrm{~N}=\mathrm{N}-\mathrm{N}(\mathrm{H}) R$, are generally believed to adopt a trans stereochemistry about the $\mathrm{N}=\mathrm{N}$ double bond (Moore \& Robinson, 1986). This arrangement has been confirmed for numerous examples characterized by X-ray diffraction. We report here the synthesis and structural characterization of the title compound, (I), a symmetric disubstituted 1,3-diaryltriazene having polarizable halogen atoms on the terminal aryl (ar) rings. These halogen atoms make contacts with the H atom of the protonated triazenide chain.

(I)

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. Deviations from normal $\mathrm{N}-\mathrm{N}$ and $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ bond lengths suggest that the delocalization of the π electrons on the triazene group has
extended to the terminal aryl substituents. $\mathrm{N} 1=\mathrm{N} 2$ [1.267 (7) \AA] is longer than the characteristic value for a double bond ($1.24 \AA$), whereas $\mathrm{N} 2-\mathrm{N} 3$ [1.332 (7) \AA] is shorter than the characteristic value for a single bond ($1.44 \AA$) (International Tables for X-ray Crystallography, 1985, Vol. III, p. 270). Both N1-C11 [1.422 (7) A] and N3-C31 [1.388 (8) Å] are shorter than expected for a $\mathrm{C}_{\mathrm{ar}}-\mathrm{N}$ single bond. These values are in good agreement with those found in related compounds (Zhang et al., 1999; Walton et al., 1991).

The terminal 2,4-dibromophenyl substituents make an interplanar angle of 14.7 (2) ${ }^{\circ}$, indicating the lack of planarity of the whole molecule. Due to the weak intramolecular N3$\mathrm{H} 3 \cdots \mathrm{Br} 3$ interaction [$\mathrm{N} 3 \cdots \mathrm{Br} 33.076$ (5) Å], the related 2,4dibromophenyl substituent is nearly coplanar with the $\mathrm{N} 1=\mathrm{N} 2-\mathrm{N} 3$ group [$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32174.7$ (6) ${ }^{\circ}$].

The crystal structure of (I) reveals that diagonal glide-plane-related molecules are ordered into chains by weak N3H3 . - Br2 intermolecular interactions [N3 • . Br2 ${ }^{\mathrm{i}} 3.717$ (6) Å; symmetry code: (i) $\left.x+\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}\right]$. These chains are stacked along the [100] direction, and are associated in pairs by an inversion centre. Weak interactions between these pairs can be recognized by intermolecular $\mathrm{C} \cdots \mathrm{Br}$ contacts $\left[\mathrm{C} 16 \cdots \mathrm{Br} 1^{\mathrm{ii}}\right.$ 3.788 (7) \AA; symmetry code: (ii) $2-x, 1-y, 2-z]$. On the other hand, weak intermolecular $\mathrm{C} \cdots \mathrm{Br}$ contacts $\left[\mathrm{C} 13 \cdots \mathrm{Br} 3{ }^{\text {iii }}\right.$ 3.419 (6) \AA and $\mathrm{C} 14 \cdots \mathrm{Br}^{\text {iii }} 3.455$ (7) \AA; symmetry code: (iii) $\left.x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z\right]$ observed along the individual polymer chains hinder the coplanarity of the $\mathrm{C} 11-\mathrm{C} 16$ aryl group with the plane defined by the $\mathrm{N} 1=\mathrm{N} 2-\mathrm{N} 3$ group [interplanar angle $\left.9.1(8)^{\circ}\right]$.

Figure 1
The molecular structure of (I) with 70% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Experimental

2,4-Dibromoaniline ($5.02 \mathrm{~g}, 20.0 \mathrm{mmol}$) was dissolved in glacial acetic acid (40 ml) and cooled below room temperature. A sodium nitrite solution ($0.69 \mathrm{~g}, 10 \mathrm{mmol}$) in water (10 ml) was added slowly with continuous stirring. A yellow precipitate was observed. After complete addition of the above solution, the resulting mixture was neutralized with a 10% aqueous solution of NaHCO_{3}. The yellow crude product was isolated by filtration and dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ under vacuum. The product was recrystallized from a tetrahydrofuran-n-hexane mixture (1:1). Yellow plate-shaped crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent mixture (yield $6.35 \mathrm{~g}, 95 \%$; m.p. $428-429 \mathrm{~K}$).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Br}_{4} \mathrm{~N}_{3}$
$M_{r}=512.85$
Monoclinic, $P 2_{\mathrm{a}_{1}} / n$
$a=10.701$ (5) \AA
$b=9.949$ (5) \AA
$c=13.888$ (5) \AA
$\beta=90.080$ (5)
$V=1478.6$ (11) \AA^{3}
$Z=4$
$D_{x}=2.304 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=6.2-15.1^{\circ}$
$\mu=10.88 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: ψ scan (Spek, 1990)
$T_{\text {min }}=0.115, T_{\text {max }}=0.337$
3358 measured reflections
2878 independent reflections
2045 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.111$
$S=1.02$
2878 reflections
172 parameters

$$
\begin{aligned}
& R_{\text {int }}=0.037 \\
& \theta_{\max }=26^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-12 \rightarrow 1 \\
& l=0 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \text { min } \\
& \quad \text { intensity variation: } \pm 0.5 \%
\end{aligned}
$$

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0616 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.01 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-1.00 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA,^{\circ}$).

$\mathrm{Br} 3-\mathrm{C} 32$	$1.900(7)$	$\mathrm{N} 2-\mathrm{N} 1$	$1.267(7)$
$\mathrm{Br} 4-\mathrm{C} 34$	$1.892(6)$	$\mathrm{N} 1-\mathrm{C} 11$	$1.422(7)$
$\mathrm{Br} 1-\mathrm{C} 12$	$1.890(6)$	$\mathrm{C} 13-\mathrm{Br} 3^{\mathrm{i}}$	$3.419(6)$
$\mathrm{Br} 2-\mathrm{C} 14$	$1.913(6)$	$\mathrm{C} 14-\mathrm{Br}^{\mathrm{i}}$	$3.455(7)$
$\mathrm{N} 3-\mathrm{N} 2$	$1.332(7)$	$\mathrm{C} 16-\mathrm{Br} 1^{\mathrm{ii}}$	$3.788(7)$
$\mathrm{N} 3-\mathrm{C} 31$	$1.388(8)$		
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 31$	$120.2(5)$	$\mathrm{C} 35-\mathrm{C} 34-\mathrm{Br} 4$	$119.3(5)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{N} 3$	$111.6(5)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 1$	$117.3(6)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 11$	$112.9(5)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 1$	$120.8(4)$
$\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32$	$120.7(6)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{Br} 2$	$118.9(5)$
$\mathrm{C} 31-\mathrm{C} 32-\mathrm{Br} 3$	$119.5(5)$		
$\mathrm{C} 31-\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1$	$177.7(5)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 16$	$-7.8(9)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 11$	$177.9(5)$	$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12$	$172.9(6)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32$	$174.7(6)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{Br} 1$	$-2.4(8)$
$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 36$	$-3.9(9)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32$	$174.7(6)$
$\mathrm{N} 3-\mathrm{C} 31-\mathrm{C} 32-\mathrm{Br} 3$	$-0.4(8)$		

[^0]Table 2
Hydrogen-bonding geometry and short intermolecular contacts ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{Br} 2^{\mathrm{i}}$	0.86	2.91	$3.717(6)$	156
$\mathrm{~N} 3-\mathrm{H} 3 \cdots \mathrm{Br} 3$	0.86	2.64	$3.076(5)$	113

Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, z-\frac{1}{2}$.

H atoms were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=$ $0.86 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ of the parent atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Farrugia, 1997) and PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and ORTEP-32.

This work has received partial support from CNPq (Proc. 520424/94-8) and FAPERGS. MH, JB and ICC thank CNPq for grants. The authors thank Professor Dr J. Strähle, Institut für Anorganische Chemie, Universität Tübingen, Germany, for diffractometer facilities.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1213). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Moore, D. S. \& Robinson, S. D. (1986). Adv. Inorg. Chem. Radiochem. 30, 1-68.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A36, C-34.
Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
Spek, A. L. (1999). PLATON. Version of October 1999. University of Utrecht, The Netherlands.
Walton, A. R., Jenkins, T. C. \& Neidle, S. (1991). Acta Cryst. B47, 771-775.
Zhang, D.-C., Fei, Z.-H., Zhang, T.-Z., Zhang, Y.-Q. \& Yu, K.-B. (1999). Acta Cryst. C55, 102-104.

[^0]: Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $2-x,-y,-z$.

